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4-manifolds admitting fibrations

M4: closed oriented 4-manifold
B : closed oriented surface
S={p1,…,pn}⊂B branch set
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4-manifolds admitting fibrations

M4: closed oriented 4-manifold
B : closed oriented surface
S={p1,…,pn}⊂B branch set

A genus-h fibration of M4 over B branched over S

is f:M4→B s.t.

f|      : M\f-1(S) → B\S

is a locally trivial fibration  (i.e. a fibre bundle) 

&  each generic fibre  f-1(b)

is a closed surface of genus h

M\f-1(S)
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Monodromy of f :M4→B

(generic) base point t ∈ B\S

monodromy homomorphism  : π1(B\S,t)→Mod(f-1(t))
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Monodromy of f :M4→B

(generic) base point t ∈ B\S

monodromy homomorphism  : π1(B\S,t)→Mod(f-1(t))

Mapping class groups  Modg,n:=Mod(Σg,n), Modh:=Mod(Σh).

Take homeomorphisms   : Σh→f-1(t) and    : (Σg,n,s)→(B\S,t).
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Monodromy of f :M4→B

(generic) base point t ∈ B\S

monodromy homomorphism  : π1(B\S,t)→Mod(f-1(t))

Mapping class groups  Modg,n:=Mod(Σg,n), Modh:=Mod(Σh).

Take homeomorphisms   : Σh→f-1(t) and    : (Σg,n,s)→(B\S,t).

Definition (monodromy invariant) :

MO(f) is the coset of                              I   in  

Mg,n,h :=           \ /         .
Modg,n

Hom(π1(Σg,n, s), Modh)
Modh
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Monodromy of f :M4→B

(generic) base point t ∈ B\S

monodromy homomorphism  : π1(B\S,t)→Mod(f-1(t))

Remarks: • MO(f)  does not depend on t,      and       .

• MO(f1) = MO(f2)   iff

∃ fibre-preserving homeomorphism between �� ∖ ��
��(��)

Mapping class groups  Modg,n:=Mod(Σg,n), Modh:=Mod(Σh).

Take homeomorphisms   : Σh→f-1(t) and    : (Σg,n,s)→(B\S,t).

Definition (monodromy invariant) :

MO(f) is the coset of                              I   in

Mg,n,h :=           \ /         .
Modg,n

Hom(π1(Σg,n, s), Modh)
Modh
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Study of genus-h fibration by mean of monodromy

Question 1:

Question 2:

To what extent MO(f) determines (M4,f,B) ? 

How to describe Mg,n,h ?
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Study of genus-h fibration by mean of monodromy

Question 2:

Today: Part I: torus fibration over 2-sphere

Part II: holomorphic fibration

•classify elements of M0,n,1 up to stabilisation

•Finiteness of {MO(f) | f:C2→B holomorphic}

h≥2

•Classifying map

How to describe Mg,n,h ?

Question 1: To what extent MO(f) determines (M4,f,B) ? 

f:C2→B

F:B→��
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Part I-(i) Torus fibration over S2

f: M4→S2

Generic fibre = torus

Mod1 = SL(2,Z)

base point sMonodromy homomorphism: 
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Part I-(i) Torus fibration over S2

f: M4→S2

Generic fibre = torus

Mod1 = SL(2,Z)

base point sMonodromy homomorphism: 

Choose generator loops  r1,r2,…,rn  s.t.

π1(S2\{p1,…,pn}, s) = <r1,r2,…,rn | r1…rn=1>.

is identified with

an n-tuple (φ1,…,φn) global monodromy.
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Part I-(i) Torus fibration over S2

f: M4→S2

Generic fibre = torus

Mod1 = SL(2,Z)

base point sMonodromy homomorphism: 

Choose generator loops  r1,r2,…,rn  s.t.

π1(S2\{p1,…,pn}, s) = <r1,r2,…,rn | r1…rn=1>.

is identified with

an n-tuple (φ1,…,φn) global monodromy.

Bn=Bn(�2)↠Bn(S2)↠Mod0,n

Artin generators �� provide

����
��
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Part I-(i) Torus fibration over S2

f: M4→S2

Generic fibre = torus

Mod1 = SL(2,Z)

base point sMonodromy homomorphism: 

Choose generator loops  r1,r2,…,rn  s.t.

π1(S2\{p1,…,pn}, s) = <r1,r2,…,rn | r1…rn=1>.

is identified with

an n-tuple (φ1,…,φn) global monodromy.

Bn=Bn(�2)↠Bn(S2)↠Mod0,n

Artin generators �� provide

Hurwitz moves:

(…,φiφi+1φi
-1,φi,…) (…,φi,φi+1,…) (…,φi+1,φi+1

-1φiφi+1,…)

����
��

����
��
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Part I-(i) Torus fibration over S2

f: M4→S2

Generic fibre = torus

Mod1 = SL(2,Z)

base point sMonodromy homomorphism: 

Choose generator loops  r1,r2,…,rn  s.t.

π1(S2\{p1,…,pn}, s) = <r1,r2,…,rn | r1…rn=1>.

is identified with

an n-tuple (φ1,…,φn) global monodromy.

Bn=Bn(�2)↠Bn(S2)↠Mod0,n

Artin generators �� provide

Hurwitz moves:

(…,φiφi+1φi
-1,φi,…) (…,φi,φi+1,…) (…,φi+1,φi+1

-1φiφi+1,…)

Hurwitz equivalent: (φ1,…,φn) ~ (ψ1,…,ψn)

Claim:  Hurwitz equivalence     same invariant in M0,n,1

����
��

����
��
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Part I-(ii) Type of singularities f: M4→S2      (φ1,…,φn)

Definition: type  �(f) := [ [φ1] , … , [φn] ] a multi-set.

Remark: (φ1 , … , φn)~(φ1 , … , φn) ⟹ MO(f)=MO(f') ⟹�(f)=�(f').
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Part I-(ii) Type of singularities f: M4→S2      (φ1,…,φn)

Examples:
(1) torus Lefschetz fibration :

Local model for singularities:   f(z1,z2) = ��
�+��

� orientation-preserving chart•

Each φi is a positive Dehn twist•

�(f) = n ⋅ �1 0
1 1

� = n ⋅ �1
+•

Thm. (Moishezon, Livné 1977) :

Let f and f' be torus Lefschetz fibrations over S2. Then

�(f)=�(f')  ⇔ (φ1 , … , φn)~(φ1 , … , φn).

Definition: type  �(f) := [ [φ1] , … , [φn] ] a multi-set.

Remark: (φ1 , … , φn)~(φ1 , … , φn) ⟹ MO(f)=MO(f') ⟹ �(f)=�(f').
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Part I-(ii) Type of singularities f: M4→S2      (φ1,…,φn)

Examples:
(2) torus achiral Lefschetz fibration :

Local model for singularities:   f(z1,z2) = ��
�+��

�•

Each φi is a positive/negative Dehn twist•

�(f) = p ⋅ �1 0
1 1

� + q ⋅ �
1 1
0 1

� = p ⋅ �1
+ + q ⋅ �1

−•

Thm. D (Matsumoto '85; Z.) :

Let f and f' be torus achiral Lefschetz fibrations over S2

such that �(f) = �(f') = p ⋅ �1
+ + q ⋅ �1

−. Then

p≠q    : (φ1 , … , φn)~(φ1 , … , φn);

p=q≥1 : ∞ many Hurwitz equivalent classes

corresponding to p ⋅ �1
+ + q ⋅ �1

−.

Definition: type  �(f) := [ [φ1] , … , [φn] ] a multi-set.

Remark: (φ1 , … , φn)~(φ1 , … , φn) ⟹ MO(f)=MO(f') ⟹ �(f)=�(f').
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Part I-(iii) Global monodromies up to stabilisation

Thm. A (Z.) Given a multi-set � of conjugacy classes of SL(2,Z),

∃ a tuple (u1,…,uk) of positive Dehn twists such that,

for any torus fibrations f1:M1→S2 and f2:M2→S2 with �(f1)=�=�(f2),

for any global monodromies (φ1,…,φn) of f1 and (ψ1,…,ψn) of f2, 

then

(φ1,…,φn,u1,…,uk) ~ (ψ1,…,ψn,u1,…,uk).

Remark: (u1,…,uk) depends only on the non-simple part of �.

Denis Auroux
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Part I-(iv) The additional fibration tuple in Thm.A

Remark: (u1,…,uk) depends only on the non-simple part of �.

Def.: [φ] of SL(2,Z) is simple if one of the following holds:

(0),  tr(φ)=0

(1),  tr(φ)=±1

(2),  tr(φ)=±2 and φ is conjugate to one of 

(3),  tr(φ)=±3
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Part I-(iv) The additional fibration tuple in Thm.A

Remark: (u1,…,uk) depends only on the non-simple part of �.

Def.: [φ] of SL(2,Z) is simple if one of the following holds:

(0),  tr(φ)=0

(1),  tr(φ)=±1

(2),  tr(φ)=±2 and φ is conjugate to one of 

(3),  tr(φ)=±3

Thm. B (Z.) When each [φ]∈� is simple and not of trace ±3, 

k=12 and (u1,…,uk) = (L,U,L,U,L,U,L,U,L,U,L,U) = (L,U)6.

Thm. C (Z.) When each [φ]∈� is simple, 

k=60 and (u1,…,uk) = ((L,U)6,(L,U,L)4,(L,N,(L,U)4,N,N)3).
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Part II-(i) Holomorphic fibrations

Definition: A genus-h holomorphic fibration over a closed surface of 

genus g with n branch points is (Y,f,X) where

Y : 2-dim closed complex manifold•

X : closed Riemann surface of genus g•

f: Y→X : a holomorphic map branched over a set S of n points such 

that f-1(b) is a closed Riemann surface of genus h, for b∈X\S=:B

•
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Part II-(i) Holomorphic fibrations

Definition: A genus-h holomorphic fibration over a closed surface of 

genus g with n branch points is (Y,f,X) where

Y : 2-dim closed complex manifold•

X : closed Riemann surface of genus g•

f: Y→X : a holomorphic map branched over a set S of n points such 

that f-1(b) is a closed Riemann surface of genus h, for b∈X\S=:B

•

Definition: A genus-h holomorphic family over a surface of type (g,n)

is (C,f,B) where

C : 2-dim complex manifold•

B : Riemann surface of type (g,n)•

f: C→B : a holomorphic map such that f-1(b) is a closed Riemann 

surface of genus h, for b∈B

•
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Part II-(i) Holomorphic fibrations

Definition: A genus-h holomorphic fibration over a closed surface of 

genus g with n branch points is (Y,f,X) where

Y : 2-dim closed complex manifold•

X : closed Riemann surface of genus g•

f: Y→X : a holomorphic map branched over a set S of n points such 

that f-1(b) is a closed Riemann surface of genus h, for b∈X\S=:B

•

Definition: A genus-h holomorphic family over a surface of type (g,n)

is (C,f,B) where

C : 2-dim complex manifold•

B : Riemann surface of type (g,n)•

f: C→B : a holomorphic map such that f-1(b) is a closed Riemann 

surface of genus h B

•

(Y, f, X) ↦ (C:=Y\f-1(S), f, B:=X\S) ↦ MO(f)
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Part II-(ii) Classifying map & monodromy

Isomorphic fibrations over X:

(C1,f1,X)~(C2,f2,X) if ∃ a fibre-preserving biholomorphism C1≅C2

Isomorphic families over B:

(C1,f1,B)~(C2,f2,B) if ∃ a fibre-preserving biholomorphism C1≅C2

9-0



Part II-(ii) Classifying map & monodromy
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Part II-(ii) Classifying map & monodromy
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Part II-(ii) Classifying map & monodromy
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Part II-(ii) Classifying map & monodromy
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Part II-(ii) Classifying map & monodromy
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Part II-(iii) Parshin-Arakelov finiteness

fibration/family (C,f,B) is isotrivial if C��
≅ C��

, ∀ generic b1, b2∈B•

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n

P-A ver. 1: { non-isotrivial (Y,f,X) ∈ �ibr(g,n,h) } /~ is finite
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Part II-(iii) Parshin-Arakelov finiteness

fibration/family (C,f,B) is isotrivial if C��
≅ C��

, ∀ generic b1, b2∈B•

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n

P-A ver. 1: { non-isotrivial (Y,f,X) ∈ �ibr(g,n,h) } /~ is finite

Uniform P-A: The above cardinality is bounded uniformly for X ∈ ℳ� and |S|=n

[Caporaso '02]
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Part II-(iii) Parshin-Arakelov finiteness

fibration/family (C,f,B) is isotrivial if C��
≅ C��

, ∀ generic b1, b2∈B•

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n

P-A ver. 1: { non-isotrivial (Y,f,X) ∈ �ibr(g,n,h) } /~ is finite

Uniform P-A: The above cardinality is bounded uniformly for X ∈ ℳ� and |S|=n

[Caporaso '02]

Fix a Riemann surface B of type (g,n),

P-A ver. 2: { non-isotrivial (C,f,B) ∈ �am(g,n,h) } /~ is finite

[Imayoshi-Shiga '88]
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Part II-(iii) Parshin-Arakelov finiteness

fibration/family (C,f,B) is isotrivial if C��
≅ C��

, ∀ generic b1, b2∈B•

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n

P-A ver. 1: { non-isotrivial (Y,f,X) ∈ �ibr(g,n,h) } /~ is finite

Uniform P-A: The above cardinality is bounded uniformly for X ∈ ℳ� and |S|=n

[Caporaso '02]

Fix a Riemann surface B of type (g,n),

P-A ver. 2: { non-isotrivial (C,f,B) ∈ �am(g,n,h) } /~ is finite

[Imayoshi-Shiga '88]

P-A ver. 3: { non-constant holomorphic F:B→�� } is finite

(finite-to-one correspondence)
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Part II-(iii) Parshin-Arakelov finiteness

fibration/family (C,f,B) is isotrivial if C��
≅ C��

, ∀ generic b1, b2∈B•

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n

P-A ver. 1: { non-isotrivial (Y,f,X) ∈ �ibr(g,n,h) } /~ is finite

Uniform P-A: The above cardinality is bounded uniformly for X ∈ ℳ� and |S|=n

[Caporaso '02]

Fix a Riemann surface B of type (g,n),

-A ver. 2: { non-isotrivial (C,f,B) ∈ �am(g,n,h) } /~ is finite

-Shiga '88]

-A ver. 3: { non-constant holomorphic F:B→�� } is finite

-to-one correspondence)

If F*=F*  non-constant , then F=F.

P-A ver.4: HMg,n,h|B := { [F*]  |  holomorphic F:B→�� } is finite

10-4



Part II-(iv) Uniform bound for P-A Finiteness

Aim: Use MO to compare (M1,f1,B1) and (M2,f2,B2)

where B1, B2 are different Riemann surfaces of type (g,n)

Fix a Riemann surface B of type (g,n),
P-A ver.4: HMg,n,h|B := { [F*]  |  holomorphic F:B→�� } is finite
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Part II-(iv) Uniform bound for P-A Finiteness

Thm. G (Z.) Given ε>0, the following subset is finite.

HMg,n,h
≥ε := { MO(f) | (C,f,B) ∈ �am(g,n,h), sys(B)≥ε }

Aim: Use MO to compare (M1,f1,B1) and (M2,f2,B2)

where B1, B2 are different Riemann surfaces of type (g,n)

Fix a Riemann surface B of type (g,n),

P-A ver.4: HMg,n,h|B := { [F*]  |  holomorphic F:B→�� } is finite
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Part II-(iv) Uniform bound for P-A Finiteness

Thm. G (Z.) Given ε>0, the following subset is finite.

HMg,n,h
≥ε := { MO(f) | (C,f,B) ∈ �am(g,n,h), sys(B)≥ε }

Aim: Use MO to compare (M1,f1,B1) and (M2,f2,B2)

where B1, B2 are different Riemann surfaces of type (g,n)

Def.: The image of a holomorphic map  F:B→ℳ�

is called a  holomorphic curve in ℳ�.

Cor.: There are only finitely many holomorphic curves of type (g,n)

in ℳ� up to homotopy, when systole ≥ ε0 > 0.

Fix a Riemann surface B of type (g,n),

P-A ver.4: HMg,n,h|B := { [F*]  |  holomorphic F:B→�� } is finite
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Part II-(v)
Proof of Thm. G :

A glimpse of holomorphic curves

Proof (Sketch):

Step 1: Σg,n→B sending

each standard loop to a short loop.

Step 2: Irreducibility of F*(π1(B))

⟹ sys(F(b)) ≥ ε0(g,n,h,ε) 

for some b ∈ Bcp.

Step 3: Finiteness.

Thm. G (Z.) the following subset is finite

HMg,n,h
≥ε := { MO(f) | (C,f,B) ∈ �am(g,n,h), sys(B)≥ε }
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Part II-(v)
Proof of Thm. G :

A glimpse of holomorphic curves

Proof (Sketch):

Step 1: Σg,n→B sending

each standard loop to a short loop.

Step 2: Irreducibility of F*(π1(B))

⟹ sys(F(b)) ≥ ε0(g,n,h,ε) 

for some b ∈ Bcp.

Step 3: Finiteness.

Thm. G (Z.) the following subset is finite

HMg,n,h
≥ε := { MO(f) | (C,f,B) ∈ �am(g,n,h), sys(B)≥ε }
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Part II-(vi) Shape of holomorphic curves F: B  ⟶ℳ� holomorphic

Teichmüller curve
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Part II-(vi) Shape of holomorphic curves

The most rigid (holomorphic) curve : 

Def.: A Teichmüller curve is the image of a holomorphic

locally isometric map    F: (B,�
�
dB)	→

Remark: The lift is an isometric embedding

Such an isometric embedding is the SL(2,R)-orbit of a translation surface.•

The first Teichmüller curve was discovered by Veech                   [Veech '89]•

A Teichmüller curve is never complete (i.e. n>0)•

A Teichmüller curve is an algebraic curve defined over ℚ� [Möller '06]•

Every isometric map       is holomorphic                               [Antonakoudis '15]•

The monodromy of a Teichmüller curve is

essentially purely pseudo-Anosov.
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Part II-(vii)
Cusp regions are

quasi-isometrically embedded

Teichmüller space:            Teichmüller distance:•
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Teichmüller space:            Teichmüller distance:•

Moduli space: •

F: (B,�
�
dB) →•
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Part II-(vii)
Cusp regions are

quasi-isometrically embedded

Teichmüller space:            Teichmüller distance:•

Moduli space: •

F: (B,�
�
dB) →•

Thm. E-(1) (Z.) Let                     be a holomorphic map such that all

peripheral monodromies are of     order. Let U⊂B be a cusp region.

Then F|U is a (1,K)-quasi-isometric embedding, i.e.,

for all b1, b2 ∈ U.  Here K=K(g,n,h,sys(B)).

14-3



Part II-(viii)
Holomorphic curves are

quasi-isometrically immersed 

on   B    is induced by Kobayashi norm

on         is induced by Kobayashi norm  
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Part II-(viii)
Holomorphic curves are

quasi-isometrically immersed 

on   B    is induced by Kobayashi norm

on         is induced by Kobayashi norm  
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Part II-(viii)
Holomorphic curves are

quasi-isometrically immersed 

Thm. E-(2) (Z.) Let                     be a holomorphic map such that all

peripheral monodromies are of     order.

Then F is a (1,K)-quasi-isometric immersion, i.e., for all b1, b2 ∈ B,

on   B    is induced by Kobayashi norm

on         is induced by Kobayashi norm  
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Part II-(ix)
Holomorphic curves are

quasi-isometrically immersed (cont'd)

Thm. E (Z.) If all peripheral monodromies are of ∞ order then

(1) F|a cusp region is a quasi-isometric embedding;

(2) F                     is a quasi-isometric immersion.

A better cartoon of the holomorphic curve :
F: B  ⟶ℳ� holomorphic
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Part II-(ix)
Holomorphic curves are

quasi-isometrically immersed (cont'd)

Thm. E (Z.) If all peripheral monodromies are of ∞ order then

(1) F|a cusp region is a quasi-isometric embedding;

(2) F                     is a quasi-isometric immersion.

Remarks:

(1) When a peripheral monodromy is of

finite order, the image of the cusp

region might be contained in

(2) ∃ quasi-isometrically immersed but

not       isometrically immersed

holomorphic curves in

A better cartoon of the holomorphic curve :
F: B  ⟶ℳ� holomorphic
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Part II-(x)
Quasi-isometrically embedded

fundamental domains

17-0



Part II-(x)
Quasi-isometrically embedded

fundamental domains
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Part II-(x)
Quasi-isometrically embedded

fundamental domains
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Part II-(x)
Quasi-isometrically embedded

fundamental domains

Let f:C2→ℂP�=X be a holomorphic genus-2 Lefschetz fibration

without separating vanishing cycles.

Let F:B→ℳ� be the classifying map of f.

Then, any lift of F has a

quasi-isometrically embedded fundamental domain D of B.

17-3
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Appendix 2 Quasi-isometrically immersed lift

Thm. Let F: B →ℳ� be a holomorphic map

s.t. all peripheral monodromies are of ∞ order. Then F is

a (K,C)-quasi-isometric immersion, i.e., for any geodesic 

segment α ⊂ B,

where � has the shortest image under � amount all paths

relatively isotopic to �.

A2



Appendix 3 Open questions

A3


