

Yibo Zhang yibo.zhang@univ-grenoble-alpes.fr

Institut Fourier, Université Grenoble Alpes April 5, 2024

Find this file at ahdoc.github.io/math_doc/defense.pdf


```
(generic) base point t \in B \setminus S
```

```
Monodromy of f : M^4 \rightarrow B
```

Monodromy of $f : M^4 \rightarrow B$

(generic) base point $t \in B \setminus S$

→ monodromy homomorphism $\Phi_{f,t}: \pi_1(B\setminus S,t) \rightarrow Mod(f^{-1}(t))$

Mapping class groups $Mod_{g,n}:=Mod(\Sigma_{g,n})$, $Mod_h:=Mod(\Sigma_h)$. Take homeomorphisms $\Psi: \Sigma_h \rightarrow f^{-1}(t)$ and $\Psi: (\Sigma_{g,n}, s) \rightarrow (B \setminus S, t)$.

Monodromy of $f : M^4 \rightarrow B$

(generic) base point $t \in B \setminus S$

→ monodromy homomorphism $\Phi_{f,t}: \pi_1(B\setminus S,t) \rightarrow Mod(f^{-1}(t))$

Mapping class groups $Mod_{g,n}:=Mod(\Sigma_{g,n})$, $Mod_h:=Mod(\Sigma_h)$. Take homeomorphisms $\Psi: \Sigma_h \rightarrow f^{-1}(t)$ and $\Psi: (\Sigma_{g,n}, s) \rightarrow (B \setminus S, t)$. <u>Definition</u> (monodromy invariant): <u>MO(f)</u> is the coset of $\Psi_* \circ \Phi_{f,t} \circ \Psi_*$ in

 $M_{g,n,h} := Mod_{g,n} Hom(\pi_1(\Sigma_{g,n}, s), Mod_h) / Mod_h$

Page 2

Monodromy of $f : M^4 \rightarrow B$

(generic) base point $t \in B \setminus S$

→ monodromy homomorphism $\Phi_{f,t}: \pi_1(B\setminus S,t) \rightarrow Mod(f^{-1}(t))$

Mapping class groups $Mod_{g,n}:=Mod(\Sigma_{g,n})$, $Mod_h:=Mod(\Sigma_h)$. Take homeomorphisms $\Psi: \Sigma_h \rightarrow f^{-1}(t)$ and $\Psi: (\Sigma_{g,n}, s) \rightarrow (B \setminus S, t)$. <u>Definition</u> (monodromy invariant) : <u>MO(f)</u> is the coset of $\Psi_* \circ \Phi_{f,t} \circ \Psi_*$ in $Hom(\pi_1(\Sigma_{g,n}, S), Mod_h)$

 $M_{g,n,h} := Mod_{g,n} Hom(\pi_1(\Sigma_{g,n}, s), Mod_h)/Mod_h$

<u>**Remarks:**</u> · MO(f) does not depend on t, Ψ and Ψ .

• $MO(f_1) = MO(f_2)$ iff

Page 2 \exists fibre-preserving homeomorphism between $M_i \setminus f_i^{-1}(S_i)$

Study of genus-h fibration by mean of monodromy

Question 1: To what extent MO(f) determines (M⁴, f, B)?

Question 2: How to describe M_{g,n,h}?

Study of genus-h fibration by mean of monodromy

Question 1: To what extent MO(f) determines (M⁴, f, B)?

Question 2: How to describe $M_{g,n,h}$?

Today: Part I: torus fibration over 2-sphere

• classify elements of $M_{0,n,1}$ up to stabilisation

Part II: holomorphic fibration $f:C^2 \rightarrow B$

• Finiteness of $\{MO(f) \mid f: C^2 \rightarrow B \text{ holomorphic}\}$

Page 3

3-1

Classifying map

h>2

 $F:B \rightarrow \mathcal{M}_h$

4-1
Part I-(i) Torus fibration over S²
Monodromy homomorphism:

$$f: M^4 \rightarrow S^2$$

Generic fibre = torus
 $Mod_1 = SL(2,\mathbb{Z})$
base point s
 $f_{f,S}: \pi_4(S^2 \setminus \{p_4, \dots, p_n\}, s) \rightarrow SL(2,\mathbb{Z})$
Choose generator loops r_1, r_2, \dots, r_n s.t.
 $\pi_1(S^2 \setminus \{p_1, \dots, p_n\}, s) = \langle r_1, r_2, \dots, r_n | r_1 \dots r_n = 1 \rangle$.
 $f_{f,S}$ is identified with
an n-tuple (ϕ_1, \dots, ϕ_n) global monodromy.

4-2
Part I-(i) Torus fibration over S²
Monodromy homomorphism:

$$\Phi_{f,s} : \pi_4(S^1 \{ \beta_1, \dots, \beta_n \}, s) \rightarrow SL(2,Z)$$

Choose generator loops $r_{1,r_{2},\dots,r_n} s.t.$
 $\pi_1(S^2 \setminus \{ p_1,\dots, p_n \}, s) = \langle r_{1,r_{2},\dots,r_n} | r_{1\dots}r_n=1 \rangle$.
 $\Phi_{f,s}$ is identified with
an n-tuple (ϕ_{1,\dots,ϕ_n}) global monodromy.
 $B_n=B_n(D^2) \rightarrow B_n(S^2) \rightarrow Mod_{0,n}$
Artin generators σ_i provide

Page4

Part I-(ii) Type of singularities $f: M^4 \rightarrow S^2$ $(\phi_{1,...}, \phi_n)$

<u>Definition</u>: type $\mathcal{O}(f) := [[\phi_1], ..., [\phi_n]] a multi-set.$ $<u>Remark</u>: <math>(\phi_1, ..., \phi_n) \sim (\phi_1, ..., \phi_n) \Rightarrow MO(f) = MO(f') \Rightarrow \mathcal{O}(f) = \mathcal{O}(f').$

Examples:

(1) torus Lefschetz fibration :

- Local model for singularities: $f(z_1, z_2) = z_1^2 + z_2^2$ orientation-preserving chart
- Each φ_i is a positive Dehn twist
- $\mathcal{O}(\mathbf{f}) = \mathbf{n} \cdot \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \mathbf{n} \cdot I_1^+$

Thm. (Moishezon, Livné 1977) :

Let f and f' be torus Lefschetz fibrations over S². Then $\mathcal{O}(f) = \mathcal{O}(f') \Leftrightarrow (\phi_1, \dots, \phi_n) \sim (\phi'_1, \dots, \phi'_n).$

Page 5

Part I-(ii) Type of singularities $f: M^4 \rightarrow S^2$ $(\phi_{1,...}, \phi_n)$

<u>Definition</u>: type $\mathcal{O}(f) := [[\phi_1], ..., [\phi_n]] a multi-set.$ $<u>Remark</u>: <math>(\phi_1, ..., \phi_n) \sim (\phi_1, ..., \phi_n) \Rightarrow MO(f) = MO(f') \Rightarrow \mathcal{O}(f) = \mathcal{O}(f').$

Examples:

Page 5

(2) torus achiral Lefschetz fibration :

- Local model for singularities: $f(z_1, z_2) = z_1^2 + z_2^2$
- Each φ_i is a positive/negative Dehn twist
- $\mathcal{O}(f) = p \cdot \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + q \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = p \cdot I_1^+ + q \cdot I_1^-$

Thm. D (Matsumoto '85; Z.) :

Let f and f' be torus achiral Lefschetz fibrations over S^2 such that $O(f) = O(f') = p \cdot I_1^+ + q \cdot I_1^-$. Then

p≠q ∶ (φ₁ , ... , φ_n)~(φ₁ , ... , φ_n);

p=q≥1 : ∞ many Hurwitz equivalent classes

corresponding to $p \cdot I_1^+ + q \cdot I_1^-$.

Part I-(iii) Global monodromies up to stabilisation

🗕 Denis Auroux

Thm. A (Z.) Given a multi-set \mathcal{O} of conjugacy classes of SL(2,Z), \exists a tuple $(u_1, ..., u_k)$ of positive Dehn twists such that, for any torus fibrations $f_1: M_1 \rightarrow S^2$ and $f_2: M_2 \rightarrow S^2$ with $\mathcal{O}(f_1) = \mathcal{O} = \mathcal{O}(f_2)$, for any global monodromies $(\phi_1, ..., \phi_n)$ of f_1 and $(\psi_1, ..., \psi_n)$ of f_2 , then

$$(\phi_1,...,\phi_n,u_1,...,u_k) \sim (\psi_1,...,\psi_n,u_1,...,u_k)$$

<u>**Remark:** (u₁,...,u_k)</u> depends only on the non-simple part of O.

6

Part I-(iv) The additional fibration tuple in Thm.A

<u>**Remark:**</u> $(u_1,...,u_k)$ depends only on the non-simple part of O.

<u>**Def.**</u>: $[\phi]$ of SL(2,Z) is simple if one of the following holds:

(0), tr(φ)=0

7-0

(1), $tr(\phi)=\pm 1$ (2), $tr(\phi)=\pm 2$ and ϕ is conjugate to one of (3), $tr(\phi)=\pm 3$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$

Part I-(iv) The additional fibration tuple in Thm.A

<u>**Remark:**</u> $(u_1,...,u_k)$ depends only on the non-simple part of \mathcal{O} .

<u>**Def.:**</u> $[\phi]$ of SL(2,Z) is simple if one of the following holds:

(0), $tr(\phi)=0$ (1), $tr(\phi)=\pm 1$ (2), $tr(\phi)=\pm 2$ and ϕ is conjugate to one of $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -4 & -4 \\ -4 & -4 \end{bmatrix}$ (3), $tr(\phi)=\pm 3$

Thm. B (Z.) When each $[\phi] \in \mathcal{O}$ is simple and not of trace ± 3 , k=12 and $(u_1, ..., u_k) = (L, U, L, U, L, U, L, U, L, U) = (L, U)^6$.

<u>Thm. C (Z.)</u> When each $[\phi] \in \mathcal{O}$ is simple,

7-1

k=60 and $(u_1,...,u_k) = ((L,U)^6, (L,U,L)^4, (L,N,(L,U)^4, N,N)^3).$

 $L = \begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix} N = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} U = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ Page 7

Part II-(i) Holomorphic fibrations

<u>Definition</u>: A genus-h holomorphic fibration over a closed surface of genus g with n branch points is (Y,f,X) where

- Y : 2-dim <u>closed</u> complex manifold
- X : <u>closed</u> Riemann surface of genus g
- f: $Y \rightarrow X$: a holomorphic map <u>branched</u> over a set S of n points such
 - that $f^{-1}(b)$ is a closed Riemann surface of genus h, for $b \in X \setminus S = :B$

Part II-(i) Holomorphic fibrations

≥ 2g-2+n>0, h72

<u>Definition</u>: A genus-h holomorphic fibration over a closed surface of genus g with n branch points is (Y,f,X) where

- Y : 2-dim <u>closed</u> complex manifold
- X : <u>closed</u> Riemann surface of genus g
- f: Y→X: a holomorphic map <u>branched</u> over a set S of n points such that f⁻¹(b) is a closed Riemann surface of genus h, for b∈X\S=:B

<u>Definition</u>: A genus-h holomorphic family over a surface of type (g,n) is (C,f,B) where

- C : 2-dim complex manifold
- B : Riemann surface of type (g,n)
- f: C→B : a holomorphic map such that f⁻¹(b) is a closed Riemann surface of genus h, for b∈B

Yage &

Part II-(i) Holomorphic fibrations

<u>**Definition:**</u> A genus-h holomorphic fibration over a closed surface of genus g with n branch points is (Y,f,X) where

2g-2+n>0, h>2

MO(f)

- Y : 2-dim <u>closed</u> complex manifold
- X : <u>closed</u> Riemann surface of genus g
- f: Y→X : a holomorphic map <u>branched</u> over a set S of n points such that f⁻¹(b) is a closed Riemann surface of genus h, for b∈X\S=:B

<u>Definition</u>: A genus-h holomorphic family over a surface of type (g,n) is (C,f,B) where

- C: 2-dim complex manifold
- B : Riemann surface of type (g,n)
- f: C→B: a holomorphic map such that f⁻¹(b) is a closed Riemann surface of genus h, for b∈B
 Fibr (g,n,h) → Fam (g,n,h) Mo>HMg,n,h ⊂ Mg,n,h

 $(Y, f, X) \mapsto (C:=Y \setminus f^{-1}(S), f, B:=X \setminus S) \mapsto$

Part II-(ii) Classifying map & monodromy

Isomorphic fibrations over X: $(C_1,f_1,X)\sim(C_2,f_2,X)$ if \exists a fibre-preserving biholomorphism $C_1\cong C_2$

 $\begin{array}{cccc} \mathcal{F}_{ibr}(g,n,h) & \longrightarrow \mathcal{F}_{am}(g,n,h) & \stackrel{\text{Mo}}{\longrightarrow} \mathcal{H}Mg,n,h \subset Mg,n,h \\ & & (C,f,B) & \longmapsto \mathcal{M}O(C,f,B) \end{array}$

Isomorphic families over B: $(C_1,f_1,B)\sim(C_2,f_2,B)$ if \exists a fibre-preserving biholomorphism $C_1\cong C_2$

Part II-(ii) Classifying map & monodromy

• CM is finite-to-one

Part II-(iii) Parshin-Arakelov finiteness | 2g-2+n>o, h>2

• fibration/family (C,f,B) is isotrivial if $C_{b_1} \cong C_{b_2}$, \forall generic b_1 , $b_2 \in B$

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n<u>P-A ver.</u> 1: { non-isotrivial (Y,f,X) $\in Fibr(g,n,h)$ } /~ is finite

Part II-(iii) Parshin-Arakelov finiteness | 2g-2+n>o, h>2

• fibration/family (C,f,B) is isotrivial if $C_{b_1} \cong C_{b_2}$, \forall generic b_1 , $b_2 \in B$

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n<u>P-A ver.</u> 1: { non-isotrivial (Y,f,X) $\in Fibr(g,n,h)$ } /~ is finite

<u>Uniform P-A</u>: The above cardinality is bounded uniformly for $X \in \mathcal{M}_g$ and |S|=n[Caporaso '02]

Part II-(iii) Parshin-Arakelov finiteness 2g-2+n>o, h>2

• fibration/family (C,f,B) is isotrivial if $C_{b_1} \cong C_{b_2}$, \forall generic b_1 , $b_2 \in B$

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n<u>P-A ver.</u> 1: { non-isotrivial (Y,f,X) $\in Fibr(g,n,h)$ } /~ is finite

<u>Uniform P-A</u>: The above cardinality is bounded uniformly for $X \in \mathcal{M}_g$ and |S|=n[Caporaso '02]

Fix a Riemann surface B of type (g,n), <u>P-A ver. 2</u>: { non-isotrivial (C,f,B) ∈ Fam(g,n,h) } /~ is finite [Imayoshi-Shiga '88]

Part II-(iii) Parshin-Arakelov finiteness | 2g-2+n>o, h>2

• fibration/family (C,f,B) is isotrivial if $C_{b_1} \cong C_{b_2}$, \forall generic b_1 , $b_2 \in B$

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n<u>P-A ver.</u> 1: { non-isotrivial (Y,f,X) $\in Fibr(g,n,h)$ } /~ is finite

<u>Uniform P-A</u>: The above cardinality is bounded uniformly for $X \in \mathcal{M}_g$ and |S|=n[Caporaso '02]

Fix a Riemann surface B of type (g,n), <u>P-A ver. 2</u>: { non-isotrivial $(C,f,B) \in \mathcal{F}am(g,n,h)$ } /~ is finite [Imayoshi-Shiga '88] <u>P-A ver. 3</u>: { non-constant holomorphic F:B $\rightarrow \mathcal{M}_h$ } is finite (finite-to-one correspondence)

Part II-(iii) Parshin-Arakelov finiteness | 2g-2+n>o, h>2

• fibration/family (C,f,B) is isotrivial if $C_{b_1} \cong C_{b_2}$, \forall generic b_1 , $b_2 \in B$

10-4

Yage 10

Fix a closed Riemann surface X of genus g; fix the branch set S, |S|=n<u>P-A ver.</u> 1: { non-isotrivial (Y,f,X) $\in Fibr(g,n,h)$ } /~ is finite

<u>Uniform P-A</u>: The above cardinality is bounded uniformly for $X \in \mathcal{M}_g$ and |S|=n[Caporaso '02]

Fix a Riemann surface B of type (g,n), <u>P-A ver. 2</u>: { non-isotrivial $(C,f,B) \in \mathcal{F}am(g,n,h)$ } /~ is finite [Imayoshi-Shiga '88] <u>P-A ver. 3</u>: { non-constant holomorphic F:B $\rightarrow \mathcal{M}_h$ } is finite (finite-to-one correspondence) **Rigidity Theorem:** If F*=F* non-constant , then F=F. <u>P-A ver.4</u>: HM_{g,n,h} B := { [F*] | holomorphic F:B $\rightarrow \mathcal{M}_h$ } is finite

Part II-(iv) Uniform bound for P-A Finiteness

Fix a Riemann surface B of type (g,n), <u>P-A ver.4</u>: $HM_{g,n,h}|_{B} := \{ [F*] \mid holomorphic F: B \rightarrow \mathcal{M}_{h} \}$ is finite

<u>Aim</u>: Use MO to compare (M_1, f_1, B_1) and (M_2, f_2, B_2) where B_1 , B_2 are different Riemann surfaces of type (g, n)

Part II-(iv) Uniform bound for P-A Finiteness

Fix a Riemann surface B of type (g,n), <u>P-A ver.4</u>: $HM_{g,n,h}|_{B} := \{ [F_*] \mid holomorphic F: B \rightarrow \mathcal{M}_h \}$ is finite

<u>Aim</u>: Use MO to compare (M_1, f_1, B_1) and (M_2, f_2, B_2) where B_1 , B_2 are different Riemann surfaces of type (g, n)

Thm. G (Z.) Given $\varepsilon > 0$, the following subset is finite. $HM_{g,n,h}^{\geq \varepsilon} := \{ MO(f) \mid (C,f,B) \in \mathcal{F}am(g,n,h), sys(B) \ge \varepsilon \}$

Part II-(iv) Uniform bound for P-A Finiteness

Fix a Riemann surface B of type (g,n), <u>P-A ver.4</u>: $HM_{g,n,h}|_{B} := \{ [F_*] \mid holomorphic F: B \rightarrow \mathcal{M}_h \}$ is finite

<u>Aim</u>: Use MO to compare (M_1, f_1, B_1) and (M_2, f_2, B_2) where B_1 , B_2 are different Riemann surfaces of type (g, n)

Thm. G (Z.) Given $\varepsilon > 0$, the following subset is finite. $HM_{g,n,h}^{\geq \varepsilon} := \{ MO(f) \mid (C,f,B) \in \mathcal{F}am(g,n,h), sys(B) \ge \varepsilon \}$

<u>**Def.:**</u> The image of a holomorphic map $F:B \rightarrow \mathcal{M}_h$ is called a holomorphic curve in \mathcal{M}_h . <u>**Cor.:**</u> There are only finitely many holomorphic curves of type (g,n) in \mathcal{M}_h up to <u>homotopy</u>, when systole $\geq \varepsilon_0 > 0$. <u>Page 11</u>

12-0 Proof of Thm. G: Part II-(v) A glimpse of holomorphic curves Thm. G (Z.) the following subset is finite $\mathsf{HM}_{q,n,h^{\geq \varepsilon}} := \{ \mathsf{MO}(\mathsf{f}) \mid (\mathcal{C},\mathsf{f},\mathsf{B}) \in \mathcal{F}am(g,n,h), \mathsf{sys}(\mathsf{B}) \geq \varepsilon \}$ Proof (Sketch): Step 1: $\Sigma_{g,n} \rightarrow B$ sending each standard loop to a short loop. Step 2: Irreducibility of $F_*(\pi_1(B))$ \Rightarrow sys(F(b)) $\geq \varepsilon_0(q,n,h,\varepsilon)$ for some $b \in B_{cp}$. Step 3: Finiteness. \square Page 12

12-1 Proof of Thm. G: Part II-(v) A glimpse of holomorphic curves Thm. G (Z.) the following subset is finite $\mathsf{HM}_{q,n,h^{\geq\epsilon}} := \{ \mathsf{MO}(\mathsf{f}) \mid (\mathcal{C},\mathsf{f},\mathsf{B}) \in \mathcal{F}am(g,n,h), \mathsf{sys}(\mathsf{B}) \geq \epsilon \}$ Proof (Sketch): Step 1: $\Sigma_{q,n} \rightarrow B$ sending each standard loop to a short loop. **Step 2:** Irreducibility of $F_*(\pi_1(B))$ \Rightarrow sys(F(b)) $\geq \varepsilon_0(q,n,h,\varepsilon)$ for some $b \in B_{cp}$. Step 3: Finiteness. \mathbb{Z} Page 12

Part II-(vi) Shape of holomorphic curves $F: B \rightarrow \mathcal{M}_h$ holomorphic

Page 13

Part II-(vi) Shape of holomorphic curves

The most rigid (holomorphic) curve :

<u>Def.</u>: A Teichmüller curve is the image of a holomorphic

locally isometric map $F: (B, \frac{1}{2}dB) \rightarrow (\mathcal{M}_{k}, d\mu)$

<u>Remark:</u> The lift is an isometric embedding

$\widetilde{\mathsf{F}}:(\mathsf{H}^2,\tfrac{4}{2}\mathsf{d}_{\mathsf{H}})\to(\mathsf{T}_h,\mathsf{d}_{\mathsf{T}})$

- Such an isometric embedding is the SL(2,R)-orbit of a translation surface.
- The first Teichmüller curve was discovered by Veech [Veech '89]
- A Teichmüller curve is never complete (i.e. n>0)
- A Teichmüller curve is an algebraic curve defined over $\overline{\mathbb{Q}}$ [Möller '06]
- Every isometric map $\widetilde{\mathbf{F}}$ is holomorphic [Antonakoudis '15]

The monodromy of a Teichmüller curve is

<u>e</u>ssentially <u>p</u>urely <u>p</u>seudo-<u>A</u>nosov.

14-0 Cusp regions are Part II-(vii) quasi-isometrically embedded

• Teichmüller space: The Teichmüller distance: da (The day)

14-1 Cusp regions are Part II-(vii) quasi-isometrically embedded

- Teichmüller distance: dr • Teichmüller space: 🏹
- (Th, dr) (Mh, dr) • Moduli space: M $d_{\mathcal{M}}(q_{A}, q_{2}) := \inf d_{\mathcal{D}}(\widetilde{q}_{A}, \widetilde{q}_{2})$

14-2 Part II-(vii) Cusp regions are quasi-isometrically embedded

• Teichmüller space: 7, Teichmüller distance: dr

• Moduli space:
$$M_{h}$$
 $d_{\mathcal{M}}(q_{A}, q_{2}) := \inf d_{\mathcal{Q}}(\tilde{q}_{A}, \tilde{q}_{2})$ $(M_{h}, d_{\mathcal{M}})$
• F: $(B, \frac{1}{2}d_{B}) \rightarrow (M_{h}, d_{\mathcal{M}})$ \mathcal{O} \mathcal{O} \mathcal{F}

(Th, dq)

14-3 Cusp regions are Part II-(vii) quasi-isometrically embedded

- Teichmüller space: 7, Teichmüller distance: dr
- Moduli space: M_{A} $d_{\mathcal{M}}(q_{A}, q_{2}) := \inf d_{\mathcal{Q}}(\widetilde{q}_{A}, \widetilde{q}_{2})$ $(M_{A}, d_{\mathcal{M}})$ • F: $(B, \frac{1}{2}d_{B}) \rightarrow (M_{A}, d_{\mathcal{M}})$ $\overbrace{}$

 (γ_{λ})

dq)

<u>Thm. E-(1)</u> (Z.) Let $F: B \rightarrow Mh$ be a holomorphic map such that all peripheral monodromies are of **a** order. Let $U \subset B$ be a cusp region. Then $F|_U$ is a (1,K)-quasi-isometric embedding, i.e.,

$$\frac{1}{2} d_{B}(b_{1}, b_{2}) \ge d_{M}(F(b_{n}), F(b_{2})) \ge \frac{1}{2} d_{B}(b_{1}, b_{2}) - K$$
for all $b_{1}, b_{2} \in U$. Here $K=K(g,n,h,sys(B))$.
Page 14

Holomorphic curves are Part II-(ix) quasi-isometrically immersed (cont'd) <u>Thm. E (Z.)</u> If all peripheral monodromies are of ∞ order then (1) F|_{a cusp region} is a quasi-isometric embedding; (2) F is a quasi-isometric immersion.

Remarks:

- (1) When a peripheral monodromy is of finite order, the image of the cusp region might be contained in $\mathcal{M}_h^{\geq \epsilon}$
- (2) ∃ quasi-isometrically immersed but
 not isometrically immersed
 holomorphic curves in M_h

A better cartoon of the holomorphic curve :

 $F: B \rightarrow \mathcal{M}_h$ holomorphic

A2 Appendix 2 Quasi-isometrically immersed lift Ŧ **Thm.** Let $F: B \rightarrow \mathcal{M}_h$ be a holomorphic map s.t. all peripheral monodromies are of ∞ order. Then F is a (K,C)-quasi-isometric immersion, i.e., for any geodesic segment $\alpha \subset B$, $l_{B}(a) \geq l_{C}(F(\beta)) \geq \frac{1}{K}l_{B}(a) - C$ where β has the shortest image under F amount all paths relatively isotopic to α .